
MOUVEMENT DE ROTATION UNIFORME

Un mouvement de rotation est dit uniforme si son accélération angulaire θ " est nulle θ "= 0 ou si sa vitesse ω est constante en sens et en module.

Equations de mouvement.

- Accélération angulaire : $\theta''=0$
- Vitesse angulaire : ω = constante (en rad.s⁻¹)

• Angle de rotation : $\theta(t) = \omega \cdot t + \theta \circ (\theta \text{ en rad. s}^{-1}, t \text{ en s et } \theta \circ \text{ est } 1$ 'angle de rotation initial à t = 0 en rad).

MOUVEMENT DE ROTATION UNIFORMEMENT ACCELERE

Un mouvement de rotation à accélération angulaire constante est dit uniformément accéléré si θ "= constante par rapport au temps t.

Equations de mouvement

- Accélération angulaire : $\theta'' = \text{constante}$ en rad.s⁻²
- Vitesse angulaire: $\omega(t) = \theta'' \cdot t + \omega_0$ en rad.s⁻¹
- Angle de rotation : $\theta(t) = 1/2.\theta''.t^2 + \omega_0.t + \theta_0$ (θ en rad, ω en rad.s⁻¹, t en s, θ 0 est l'angle de rotation initial à t = 0 en rad et ω 0 est la vitesse de rotation initiale en rad.s⁻¹)

2 cas: 0''>0 → mouvement uniformément accéléré. 0''<0 → mouvement uniformément décéléré ou freiné.

Formule utile: $\omega^2 = \omega_0^2 + 2.0$ ". $(\theta - \theta_0)$